Thick airfoil designs for the root of the 10MW INNWIND.EU wind turbine

نویسندگان

  • A Muñoz
  • B Méndez
چکیده

The main objective of the “INNWIND.EU” project is to investigate and demonstrate innovative designs for 10-20MW offshore wind turbines and their key components, such as lightweight rotors. In this context, the present paper describes the development of two new airfoils for the blade root region. From the structural point of view, the root is the region in charge of transmitting all the loads of the blade to the hub. Thus, it is very important to include airfoils with adequate structural properties in this region. The present article makes use of high-thickness and blunt trailing edge airfoils to improve the structural characteristics of the airfoils used to build this blade region. CENER’s (National Renewable Energy Center of Spain) airfoil design tool uses the airfoil software XFOIL to compute the aerodynamic characteristics of the designed airfoils. That software is based on panel methods which show some problems with the calculation of airfoils with thickness bigger than 35% and with blunt trailing edge. This drawback has been overcome with the development of an empirical correction for XFOIL lift and drag prediction based on airfoil experiments. From the aerodynamic point of view, thick airfoils are known to be very sensitive to surface contamination or turbulent inflow conditions. Consequently, the design optimization takes into account the aerodynamic torque in both clean and contaminated conditions. Two airfoils have been designed aiming to improve the structural and the aerodynamic behaviour of the blade in clean and contaminated conditions. This improvement has been corroborated with Blade Element Momentum (BEM) computations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance improvement of a wind turbine blade using a developed inverse design method

The purpose of this study is to improve the aerodynamic performance of wind turbine blades, using the Ball-Spine inverse design method. The inverse design goal is to calculate a geometry corresponds to a given pressure distribution on its boundaries. By calculating the difference between the current and target pressure distributions, geometric boundaries are modified so that the pressure di...

متن کامل

Performance improvement of a wind turbine blade using a developed inverse design method

The purpose of this study is to improve the aerodynamic performance of wind turbine blades, using the Ball-Spine inverse design method. The inverse design goal is to calculate a geometry corresponds to a given pressure distribution on its boundaries. By calculating the difference between the current and target pressure distributions, geometric boundaries are modified so that the pressure di...

متن کامل

Multi-Element Airfoil Configurations for Wind Turbines

The extremely thick blade root airfoils of the modern megawatt-scale wind turbines are prone to having sharp stall characteristics with associated unsteady aerodynamic blade loading and fatigue. With current technology designs reaching 45% thickness, these thick airfoils are incapable of producing high lift, and as a consequence they are aerodynamically and structurally sub-optimal. A computati...

متن کامل

Design and Implementation of the Rotor Blades of Small Horizontal Axis Wind Turbine

Since the renewable resources of energy have become extremely important, especially wind energy, scientists have begun to modify the design of the wind turbine components, mainly rotor blades. Aerodynamic design considered a major research field related to power production of a small horizontal wind turbine, especially in low wind speed locations. This study displays an approach to the selectio...

متن کامل

Experimental Investigation and Analysis of Manufacturing Wind Turbine Blades Produced by Hydroforming of Aluminum Alloy AA5754

Development of new technologies and combined with creativity and innovation, plays the fundamental role in developing of any community′s value. Thus, in this research the design and production of hydroforming device was introduced. One of the best and most efficient technologies in the world of metal forming is wind turbine blade producing with hydroforming method which seems as an innovative m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016